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A series approach to wetting and layering transitions: 
I. Potts models 

K Armitstead and J M Yeomans 
Department of Theoretical Physics, University of Oxford,  1 Keble Road,  Oxford OX1 3NP,  
U K  

Received 10 March 1987 

Abstract. Our  aim in a triad of papers is to show that series methods provide a complemen- 
tary approach to  mean-field theories in the study of interface wetting and unbinding 
transitions. 

In this paper  we consider a q-state Potts model,  which contains an  interface bound 
to a surface by a bulk field. Low-temperature and  high-q series expansions are  used to 
show that, as  the field tends to zero, the interface unbinds from the surface through a 
sequence of first-order layering transitions. We discuss the various regions of the phase 
diagram where the different expansions are  expected to be valid and  compare our  results 
with those obtained in the mean-field approximation. 

1. Introduction 

In the past few years there has been a spate of publications dealing with the properties 
of interfaces in, for example, solids, fluids and magnets. Theoretical approaches, such 
as mean-field theory (Widom 1972), numerical work (Selke 1984) and phenomenologi- 
cal arguments (Fisher 1986), have been used to explain such diverse physical 
phenomena as the shape of fluid-fluid interfaces, wetting and the role of interfaces in 
phase transitions. Recent reviews on both the structure of interfaces and interfacial 
wetting transitions have been published by Pandit et a1 (1982), Sullivan and Telo da 
Gama (1985) and Abraham (1986). Also of recent interest are papers by Bricmont 
and SIawny (1985) and Bricmont and Lebowitz (1987); earlier work is referenced in 
the reviews. The dynamics of interfacial transitions is a large topic in itself and will 
not be considered here (de Gennes 1985). 

In this series of three papers we shall focus upon three-dimensional models in 
which a discrete underlying lattice influences the behaviour of a two-dimensional 
interface. The simplest example would be a semi-infinite Ising model with an interface 
introduced via a suitable choice of boundary conditions. Previous authors (de Oliveira 
and Griffiths 1978, Pandit et a1 1982, Pilorz and Sokolowski 1984) have shown that in 
such systems an interface bound to a surface by, for example, a bulk field or local 
pinning potential, may unbind through a series of first-order layering transitions as 
the field or potential tends to zero. However, their results have been based upon 
mean-field theories. Our aim here is to extend work by Duxbury and Yeomans (1985) 
and Armitstead et a1 (1986) showing that series expansions can be usefully used to 
describe such layering transitions. We find results which are usually, but not always, 
qualitatively similar to those obtained in the mean-field limit. 
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In this, the first of the three papers, we describe the unbinding transitions of an  
interface in a q-state Potts model which is bound to the surface by a bulk field. We 
use both low-temperature and high-q expansions to show that the interface unbinds 
from the surface through a series of first-order layering transitions as the bulk field 
tends to zero, that is, as coexistence is approached. Results of the two different types 
of expansion, which are expected to hold in different regions of parameter space, are 
compared. We then discuss the mean-field limit of the same problem by solving the 
mean-field equations numerically and also by taking the mean-field limit of the 
low-temperature series (Thompson 1974, Szpilka and Fisher 1986). No qualitative 
differences in the interface phase diagrams are found. 

In the second paper of the series we will show that the same method is applicable 
to a group of models which have been usefully used as simplified, and  hence more 
tractable, representations of interfaces: the solid-on-solid models. In these systems 
overhangs of the interface and bulk fluctuations are suppressed. We study a model in 
which the interface is attracted to the surface by a local pinning potential and demon- 
strate a sequence of layering transitions as the pinning potential approaches zero. 
These models have been studied in previous publications using renormalisation group 
methods (Nightingale el a1 1984) and extrapolations from numerical results on strips 
of finite width (Luck er a1 1983). 

The third paper will continue some earlier work (Armitstead et a /  1986) in which 
the wetting of an interface in the three-state chiral clock model was studied using a 
low-temperature series. We examine the same model through a numerical solution of 
the mean-field theory and, surprisingly, find qualitatively different results. We investi- 
gate this further by taking the mean-field limit of the low-temperature series, obtaining 
results in agreement with the numerical work. We show that there is a crossover to 
mean-field behaviour as the coordination number of the lattice is increased and 
demonstrate that mean-field theory underestimates fluctuations which are important 
in driving the transitions for the simple cubic lattice. 

The experimental data required to observe layering transitions is very difficult to 
gather because the low-temperature work requires long equilibration times and good 
resolution is needed to distinguish between possible layers. Qualitative comparisons 
with specific systems are hampered by limited knowledge of many atom-substrate 
potentials. However, layering transitions have been observed in systems of a gas 
adsorbed on a solid substrate; a classic example is the Kr-on-graphite work of Singleton 
and Halsey ( 1954). Further experiments, and possible interpretations of their results, 
are described in the reviews already cited (Pandit et a1 1982, Sullivan and Telo da  
Gama 1985). 

We now introduce the model which will be studied in this paper: the Potts model 
with an interface. The geometry we consider is a simple cubic lattice with periodic 
boundary conditions in two directions and free surfaces in the third. A general site is 
labelled ( i ,  j )  where i labels the layers parallel to the surfaces, with i = 1 being the 
surface layer, and j distinguishes sites within a layer. This geometry is shown in figure 
1. At each lattice site there is a q-state Potts spin u , , ~  = 1, 2 , .  . . , 4. An interface is 
introduced into the system by applying infinite surface fields favouring states U,./ = 1 
and ux,,  = 2 in layers 1 and  cc respectively. The Hamiltonian of the system is then 
taken to be 
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Figure 1. Interface geometry considered for the Potts model on a simple cubic lattice. n 
denotes the position of the interface. 

The pair interactions are ferromagnetic and act between nearest neighbours. Note 
that we have distinguished in-layer and interlayer couplings-this will be useful in the 
low-temperature series analysis which follows. 

For h > 0 ,  at zero temperature, T = 0, the interface is constrained to lie next to the 
surface. We shall use n to label the position of the interface with n = 1 describing the 
position immediately adjacent to the surface, as indicated in figure 1. For h < O  the 
interface is unpinned from this surface and lies at n = m. For h = 0,  all positions of 
the interface, given that it remains parallel to the surfaces, are degenerate in energy. 

Our aim is to explore what happens in the vicinity of h = 0 for T >  0. To this end 
we shall use two different expansion methods: firstly, a low-temperature series which 
is described in § 2 and, secondly, a large-q expansion elucidated in 0 3. In  both cases 
the low orders of the series expansion are considered explicitly. We then show how 
it is possible to pick out the important terms at general order and hence to predict a 
large, and possibly infinite, sequence of layering transitions. The methods have different 
ranges of validity and demonstrate that different fluctuations are important in driving 
the transition in the two regimes. 

In  D 4 the same problem is studied using the mean-field approximation. Section 
4.1 shows how the mean-field limit of the low-temperature series may be taken by 
considering an infinite coordination number. The layering sequence is qualitatively 
unchanged by this limiting procedure. A numerical solution of the mean-field 
equations, presented in 9: 4.2, confirms this result. Finally § 5 contains brief concluding 
remarks. 

2. Low-temperature expansions 

2.1. Setting up the expansion 

As low-temperature expansions will be used throughout this series of papers, and as 
the Potts model provides one of the easiest examples, we shall discuss the calculation 
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in some detail. The work extends that of Duxbury and Yeomans (1985) who treated 
the Ising model ( q  = 2).  Our results agree with theirs in this limit. 

To study the phase diagram at non-zero temperatures consider spin flips about all 
possible degenerate ground states. The standard low-temperature expansion (Domb 
1960) follows from a decomposition of the partition function 

Z , , (N)=exp(-NEE/k ,T)  

where n labels the position of the interface at T = 0, E: is the ground-state energy per 
spin, N is the number of spins in the lattice and AZ:(N) is the total contribution 
from states with m overturned spins. The reduced free energy per spin is then given by 

(2.2) F,, = - F,,( N)/  Nk, T 

= -EO,/ k, T +  1' AZ:( N)/  N 
m - I  

(2.3) 

where, using the linked-cluster theorem (Domb 1960), Xk=, AZr( N )  now only contains 
terms linear in N. 

The Boltzmann factors appearing in the expansion are: 

y = exp( -@), the contribution from the bulk field for spin flips from (+ = 2 to any 
other state, 

t = exp( - p J ) ,  for introducing a wrong bond perpendicular to the interface, and 

w = exp( - p J o ) ,  for introducing a wrong bond parallel to the interface, 

where p = l / k g T .  
The aim is to find the interface position n which, for a given h and T, maximises 

the reduced free energy. The summation in (2.3) may be expressed as a power series 
in the parameter w. For small enough w we may deduce the qualitative form of the 
phase diagram from the leading-order terms of the expansion, with higher-order 
corrections giving only a small shift in the phase boundaries. We consider first the 
lowest-order contributions to the free energy to demonstrate how the sequence of 
interface phases may be built up  inductively. 

2.2. Low-order terms 

From diagrams where one spin is flipped relative to the ground state we obtain 

F,, - F, =-(n - 1)ph + [ y - ' +  ( 4  -2)t  + ( n  - 2 ) ( ~ - ' +  - 2 )  

x t ' -  ( n  - l ) (q  - l ) t 2 y ] w Y - + ~ ( w Z q - - ' )  (2.4) 

where qL is the number of nearest neighbours within a layer. Putting p h  - O( wq-)  for 
a phase transition gives 

F, - F ,  = -(n - 1)ph + [ 1 + ( 9  -2)t  - ( 4  - l ) t ' ] ~ ' -  +0( w2"-') (2 .5)  

F,, - F,, = -( n' - n ) p h  + O( w'~-- ')  n ' ,  n z= 2. (2.6) 

Equations (2.5) and (2.6) show that for O( w * ' - - ~ )  < h < h ,  defined by 

ph, ,>  = [ I  + (q - 2)t - (q - 1 ) t 2 ]  w4- + O( w''_-~) (2.7) 
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then F2 - F,, > 0, n = 1 , 3 , 4 .  . . . Hence n = 2 appears as a stable phase and  first-order 
calculations have been sufficient to determine the 1 : 2 phase boundary. However, it 
is apparent from (2.6) that phases with n 3 2 remain degenerate within O( w 2 q ~ - 2 )  of 
h = 0. This is shown diagrammatically in figure 2 ( a ) .  

To break this degeneracy it is most convenient to evaluate F,, - F 2 ,  which is first 
non-zero at the second-order of the low-temperature expansion. It proves consistent 
(see (2.9)) to take p h  - O ( W ~ ~ - )  giving 

F,, - F~ = - ( n - 2 )  p h  + ( 1 - t )'[ 1 + ( q - 1 ) t I' w 2 4 -  + O( w34- -2  ). ( 2 . 8 )  

p h 2 , = ( l - r ) 2 [ l + ( q - l ) r ] ' ~ 2 4 - + O ( ~ 3 y - ~ 2 ) .  (2.9) 

Therefore n = 3 is the stable phase for O ( W ? ~ - - ~ )  < h < h2:3  where 

Interface phases with n 3 3 remain degenerate within O( w ~ ~ - - ' )  of h = 0. This is shown 
in figure 2 ( b ) .  

2.3. Transfer matrix calculations 

The first- and second-orders of the low-temperature series presented above suggest 
that the interface phase n + 1 will first be identified as stable at the nth order of the 
expansion. To prove this it is necessary to write down the leading term in the expansion 
at general order. This is less imposing than it might first appear because if reduced 
free energy differences, F,,- F,,, n ' >  n, are considered then many combinations of 
spin flips contribute in the same way to both F,,. and F,, and hence cancel out when 
the difference is taken. An obvious example is shown in figure 3 (a ) .  What is perhaps 
not so obvious is that other diagrams which differ from one another by factors of y ,  
such as that shown in figure 3( b ) ,  will also cancel to leading order in the vicinity of 
a phase boundary. This occurs because, when the dependence of h on w4- is considered, 
it becomes apparent that it is consistent to take y = 1 to leading order. 

Some thought shows that the lowest-order diagrams which d o  contribute to F,,. - F, 
in the vicinity of a phase boundary are chains of length n .  The chain which is of 
lowest order in t is shown in figure 3(c) .  These are indeed the physical fluctuations 
one would expect to distinguish between the free energy of an interface at position n 

T F" - F, 

n . 5  4 3 2 
( 0 )  

n = 5  4 3 2 
( 6 )  

Figure 2. Qualitative comparison of the reduced free energy differences per interface spin, 
F,, - F , ,  at ( a  1 first-order and ( b )  second-order of the low-temperature expansion. 
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Figure 3. Graphs which need to be considered in calculating the reduced free energy 
difference F , . -  F,,, n '>  n,  in the low-temperature expansion. The surface and the interface 
are denoted by vertical lines and the flipped spins are enclosed by a box. The symbol 
inside the box shows the final spin state; x denotes that the spin is different from any of 
its neighbours. ( a )  Graph occurring in both phases n 'and n, and therefore not contributing 
to F,. - F,. ( b )  Graphs with the same Boltzmann factor in the vicinity of a phase boundary, 
which cancel out in F,,,- F,,. ( c )  Graph giving rise to the lowest-order contribution to 
I=,,-!=,,.  ( d )  A typical disconnected graph which must also be included. 
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and one at  n'.  Also disconnections of such a chain, for example, that shown in figure 
3( d ) ,  must be included. Each disconnection contributes a counting factor of -1 (Fisher 
and Selke 1981). 

The problem of evaluating the leading-order reduced free energy difference is 
therefore a matter of building up  the contribution from long thin diagrams. This is 
essentially a one-dimensional problem and may be treated using transfer matrices. 
The method is explained in appendix 1 and leads to the result 

F,,. - F, = - ( n ' - n ) p h  + [ 1 + ( q  - 2) t - ( q  - 1 ) t2]' w nq- 

+ 0 ( ~ ( n + l ) 4 _ - 2  ) n ' >  n. (2.10) 

We are now in a position to argue inductively that the interface wets through a 
series of first-order phase transitions. Assume that at the ( n  - 1)th order of the 
expansion the phase n has been established as stable for 

(2.11) [ I  + ( q  - 2 ) t  - ( q  - 1)t2]"'w(n-''q- +0( w n 4 - - * )  > p h  > O( wnq--*)  

and, from (2.10), that all phases n ' 3  n remain degenerate at p h  = O + 0 ( w n y ~ - ' ) .  (Figure 
2( b )  shows the situation for n = 3.) To break this degeneracy it is necessary to consider 
higher-order terms, O( w n q ~ ) ,  in the expansion. The reduced free energy difference 
F,,- F,,, n ' >  n, is given by (2.10). This equation shows immediately that for 

[1+ ( q  - 2 ) t  - ( q  - l) t2]nwnq- + O (  w("+ ' 'q  -l ) > p h  > O( ~ ( " + " q _ - *  1 

degenerate at p h  = O+O( w ' " " ' ~ - - ~  1. 

(2.12) 

position ( n  + 1)  is stable compared to n and n ' >  n + 1. All phases n ' z  n + 1 remain 

As we have explicitly demonstrated the appearance of phases n = 1,2 ,3 ,  iterating 
this argument recursively leads to a sequence of layering transitions. However, for 
large n or q, correction terms may become important in determining the phase sequence, 
as will be commented upon later. 

3. High-q expansions 

3.1. Setting up the expansion 

In § 2 we demonstrated how to build up  a series expansion using a temperature- 
dependent variable as the small parameter. This should predict the correct phase 
sequence for finite q and sufficiently small temperatures. However, for q large the 
series will need reordering and will eventually break down. Therefore in order to 
examine this region of the phase diagram we shall use another small variable, ( l / q ) " ,  
where a is a parameter to be determined such that successive terms of the series can 
be ordered in decreasing size. 

In setting up  the expansion we follow Ginsparg et al (1980) who studied the 
bulk-phase diagram of the q-state generalisation of the Ising gauge theory with matter 
fields in the Lagrangian form. Goldschmidt (1981) later extended this work to include 
the effects of an applied field. 

Our first aim is to describe the expansion and  to explain what constitutes a sensible 
small parameter. Then, in § 3.2, the lowest orders of the high-q series are presented 
explicitly. In § 3.3 we examine the phase diagram to general order, revealing that the 
system still undergoes a sequence of layering transitions. Finally, in § 3.4, we compare 
the low-temperature and high-q expansions, noting that there are two regions in which 
different diagrams drive the transitions. 
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At sufficiently low temperatures or high fields the bulk phase is ferromagnetic for 
all q and this is the region in which our expansion is valid. As in the previous section, 
we consider all possible ground states and expand the free energy about them. We 
shall take the case J = Jo because, although the calculations can easily be generalised 
to the non-isotropic model, we d o  not gain any further insight by doing so. 

The standard expansion uses exp(-pJ) as a small variable. In order to define a 
sensible large-q limit it is convenient to parametrise the theory in terms of new couplings, 
v a n d f ,  defined by 

ea' = I + q a u  (3.1) 

e P h = l + q h f  (3.2) 

where a and b will be shown to satisfy certain inequalities by requiring that the terms 
of the expansion can be ordered in decreasing size as q + for U and f fixed. Indeed, 
if a high-temperature expansion is also performed in terms of the same couplings, a 
and b are unambiguously determined if both series are to have sensible limits. Here 
we are free within certain constraints to choose those values which prove to be the 
most useful. 

The bulk fluctuations will be considered first and limits on a and b will then be 
derived. These limits will be shown to still hold when there is an interface in the 
system and, choosing suitable values for a and b, the expansion will be demonstrated 
explicitly to lowest orders. We shall discuss later the effects of taking a different value 
of a. 

The terms in the summation in (2.1) may be written 

AZT( N )  = 1 (weight) exp( - p L )  exp( - p h S )  
diagrams 

(3.3) 
with m 

spin Rips 

where S is the net number of spins flipped from the state U,,, = 2 in a given diagram 
and L is the extra number of wrong bonds created by the m spin reversals. 

To ensure that the q-dependent contributions from bulk diagrams of a given size 
decrease as the size increases, we identify the diagrams which, for a given m, contribute 
to the series with the highest power of q. These are diagrams with m spins flipped 
from U,., = 2, occupying minimum volume, such that all neighbours are in a different 
state and they contribute a factor 

(3.4) 

where d is the dimensionality. Therefore terms in the series will decrease in size with 
increasing m if 

(3 .5 )  

It is now important to check whether (3.5) still holds when the system contains an  
interface. For a given m the contribution with the highest power of q comes from a 
( d  - 1)-dimensional compact diagram where all spins lie in the '2' phase next to the 
interface and  all neighbours flip to a different state. Such diagrams again lead to 
condition (3.4). 
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In the work which follows we shall choose a = i. This allows the expansion to be 
used at higher temperatures as will be remarked upon further in § 3.4. It will be 
demonstrated in the next section that we are working near h = O  and  that the choice 
of b is irrelevant to leading order. Therefore, for convenience, we now put b = 0. 

3.2. Lowest-order calculations 

We now present explicitly the lowest-order terms of an expansion in z = l / p 3  and 
show how, just as in the case of the low-temperature series, there is a sequence of 
interface phases with new phases appearing as higher orders of the expansion are 
considered. 

For large ph, n = 1 is stable and therefore to find a possible phase boundary as ph 
decreases we calculate F, - F , .  All contributions from single-spin-flip diagrams are 
listed in table 1. Adding these together gives (note this is the same as equation (2 .4)  
but written in terms of the new parameters U and f ) :  

F,, - Fl = - ( n  - 1)ph  + (1  + z - ' u ) - ~ ( I  +f)+ z - ~ ( I  - 2 z 3 ) (  1 + z- 'u)- '  

+ ( n  -2) (1+ z - ' u ) - ~ ( ~  + f ) + ( n  - ~ ) z - ~ ( I  -2z3)(1 + z - ' u ) - ~  

- - ( n - ~ ) z - ~ ( l  - z i ) ( l+z - ' u ) -6 (1+f ) - ' .  (3.6) 

F, - FI = - ( n  - 1)ph  + Z ~ U - ~ + O ( Z ~ )  n z 2 .  (3.7) 

Retaining only the leading-order term we obtain 

This demonstrates that for a phase transition ph must be small; hence we may put 
f= 0 and our choice of b, as stated above, becomes irrelevant. As ph decreases, n = 2 
becomes stable when 

p h , : > =  z'u-5+O(z3). (3.8) 

To this order in the expansion, all n 3 2 are degenerate for ph = O+O(z3).  Note that 
we have implicitly assumed that U is not too large so that the series can still be ordered 
in terms of powers of z. This point will be discussed further in Ii 3.4. 

Now consider the terms O(z3) .  These will arise from: 
( a )  single-spin-flip diagrams, from the last two terms of equation (3.6) and also 

from the expansion of the Boltzmann factor in the lowest-order term, and  

Table 1. Contributions to F,, - F,, n 3 2, from single-spin-flip diagrams in the high-q 
expansion. The flipped spin is denoted by a caret; x # I ,  2. L is the extra number of wrong 
bonds created by the spin reversal and S is the net number of spins flipped from U, ,  = 2. 

Number of diagrams 
Spin flipped per interface spin L S 
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( b )  the lowest-order two-spin-flip diagram, as shown in figure 4 ( a ) ,  which con- 
tributes 

2z3u-9(1 -2z3) (1  - 3 z 3 ) ( i  + z u - 1 ) - 9 - 2 z 3 u - 9 .  (3 .9)  

Adding ( a )  and ( b )  gives 

F,, - F,  = -ph  ( n - 1 ) + z2 U-' + z'( - 6 ~ - ~  + 2 u - ~ )  + O( z4) n s 2 .  (3 .10)  

Hence n 3 2  remain degenerate for p h  =O+O(z4)  at this order. Note that it is 
evident from the lowest-order calculations that once a given diagram contributes at a 
given order it will also contribute at higher orders from the expansion of the Boltzmann 
factor. This does not occur in the low-temperature series. 

The lowest-order graph which does contribute to F,, - Fz is shown in figure 4( b ) .  
This gives 

F,, - F2 = - p h (  n - 2)  + z4u-10+ O( z'). (3.1 1 )  

There are no contributions from single-flip diagrams in the vicinity of the n :  2 boundary. 
Hence the interface phase n = 3 becomes stable for 

ph2 3 = z 4 u - ' o + o ( z 5 ) .  (3 .12)  

Consideration of the lowest-order calculations enables us to deduce the form of the 
important diagrams at general order. We shall use this information in the next section 
to enable us to propose an inductive argument to obtain a sequence of layering 
transitions. 

3.3. General-order diagrams 

To explore the effect of higher-order terms in z on the phase diagram it is necessary 
to identify the lowest-order diagrams which contribute to F,,,- F,,, n ' >  n. These are, 
as in the case of the low-temperature series, axial chains of length n as shown in figure 
5 ( a ) .  However, only configurations in which each spin flips to a different state to its 
neighbours need be considered in leading order. Moreover, disconnected graphs give 
higher-order contributions. Hence 

F,,.-F,, = - ( n ' - n ) p h + ( z / ~ ) ' " z - ~ " ( 1  - 2 z 3 ) n ( 1 + z u - ' ) - 5 n + ~ ( z 2 n + 1 )  (3.13) 

(3 .14)  = -( n ' -  n)ph + z2"u-'" + O( z2"+') ,  

n n 

Figure 4. Important diagrams appearing in the high-q expansion. ( a )  Lowest-order 
two-spin-flip graph. ( b )  Lowest-order graph contributing to F, - F2,  n 3 3. 
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1 1 1 2 

- n  -I I 
n' 

n 

* n- I 
n 

Figure 5. Diagrams which contribute to F,,.- F,,,  n ' >  n, in the high-q expansion. ( a )  
Lowest-order contribution. ( b ) ,  ( c )  a n d  ( d )  First correction terms. 

We have also calculated the correction terms to this expression as a guide to where 
the ordering of the series breaks down. All contributions to O(zZn+ l )  are listed below. 

( i )  - 5 n Z Z n + l U - ( 5 n + l l  from the expansion of (1  + Z U - ' ) - ~ ~  in the leading-order term. 
from connected axial chains which d o  not border the interface 

in the '2' phase with all neighbours flipping to different states as shown in figure 5 ( b ) .  
(iii) 4 Z 2 n + l U - ( 5 f l + 4 )  from graphs as shown in figure 5 ( c ) ,  again with all neighbours 

flipping to different states. The factor of 4 arises from the possible orientations of the 
graphs. 

( iv)  - ( n  - 1 ) Z ( 2 n + l ) U - ( 5 n + l )  from the axial chains which contribute in leading order 
but with a single disconnection as shown in figure 5( d ) .  The factor ( n  - I )  arises from 
counting the ( n  - 1 )  possible positions of the disconnection. 

F,,- F,, = - ( n ' -  n ) p h  + z ~ ~ u - ~ ~  - ~ ~ ~ " + " ( 6 n ~ - ~ ' " " ' -  4u- i?n+41)  + O ( Z Z n + 2 ) .  

(ii) - Z 2 n  + I - i 5 n +  1 )  

Adding these contributions gives 

(3.15) 

It is now possible to use an  inductive argument, analogous to that presented in 
§ 2.3, to show that a sequence of layering transitions is stable. Assume that at the 
2 ( n  - 1)th order of the expansion the phase n has been established as stable for 

+ O(z'"- ' )  > p h  > O( zZn- ' )  (3.16) 

and that all phases n ' s  n remain degenerate for p h  = O +  O(z*" - ' ) .  The higher-order 
terms in the expansion which break this degeneracy are, from (3.15), O(z2" ) .  The 
reduced free energy difference F,,- F,,, n ' >  n, is given by (3.15), which shows that for 

(3.17) 

position ( n  + 1 )  is stable compared to n and n ' ,  with n'>  n + 1 .  All phases n ' s  n + 1 
remain degenerate at p h  = 0 + O( zZntl ) .  

Iterating this argument recursively leads to a sequence of layering transitions until 
the value of n appearing in the correction terms in (3.15) becomes important. Note 
that, in contrast to the expansion used in § 2.3, the phase boundaries predicted will 
be more accurate for larger values of q. However, the value of U, related to the 

Z 2 ( n - l )  - S ( f l - l )  U 

+ O( Z * " + l )  > p h  > O( Z 2 , , + I )  Z 2 n U - ? n  
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temperature, may be important in the ordering of the series. This is commented upon 
further in the next section. 

3.4. Crossover between the high-q and  low-temperature regions 

From both the high-q and  low-temperature expansions we have demonstrated a 
sequence of layering transitions. However, from the derivation of the general-order 
diagrams, it is apparent that different diagrams dominate in each case. Therefore there 
must be a crossover between the regions of validity of the two expansions. In order 
to understand this crossover it is helpful to concentrate first on the significance of the 
value of U. 

In the q +CO limit in zero field, the critical point is given by U = 1 (Goldschmidt 
1981). U > 1 defines the ferromagnetic region in which our high-q expansion is valid; 
therefore U 2 1 in the expression for the reduced free energy. Increasing U, at fixed q, 
corresponds to decreasing the temperature. 

Notice in (3.6) that O(z4) includes a contribution z 4 f 4 .  If U is very large then this 
term will dominate z * u - ~ ,  that is, U rather than z is important in determining the 
ordering of the series. At general order, U is important when z2u  - io( 1). The diagrams 
which eventually dominate when the series is ordered in terms of U have a contribution 
of O ( Z / V ) ~ " ;  these are also the diagrams, shown in figure 3 ( c ) ,  which dominate in the 
low-temperature expansion. z 2 v  - O( 1) signals a crossover between the high-q 
diagrams and the low-temperature diagrams providing the leading term at each order 
of the series expansion. 

The same phenomenon is evident from the general term in the low-temperature 
expansion given in (2.10). When qt - 1 the dominant term in the square brackets is 
qt rather than 1, and the ordering of the terms in the series must be changed. Indeed 
for q t >  1, it is not clear from this approach whether the correct leading-order terms 
could be identified or even that the series does not diverge. The high-q expansion is 

(log q1-' 

Figure 6. The regions of validity of the expansions in the q - T  plane. Region 1: low- 
temperature diagrams dominate. Region 11: high-q diagrams dominate. Region 111: neither 
series is valid ( U  < 1). 
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needed to show that the q dependence in itself does not cause a divergence. (Note 
that qt - z-*u- '  as expected.) 

Identifying the diagrams which give rise to the leading-order terms indicates that 
the important fluctuations in the low-temperature limit are, as shown in § 2.3, axial 
diagrams in which all spins are flipped to state 2, that is, the bulk phase extends locally 
towards the surface. In the high-q limit however, these are replaced by diagrams of 
the same shape but with all spins flipping to a state different from their neighbours, 
as illustrated in figure 5(a ) .  In figure 6 we show the boundary between the two regimes 
in the 9-T plane. 

3.1 the limit a z l / d  was 
derived, and we chose the value corresponding to the lower bound. Taking different 
values of a would cause different terms in the expansion to dominate. For example, 
for a > 1 ,  the low-temperature diagrams dominate for all U, whereas for 1 > a 3 l / d  
high-q diagrams dominate for suitable U. We chose the lower limit as this automatically 
probes the highest possible temperatures before the series breaks down as U -+ 1. (Note 
that U = 1 is below the bulk critical temperature T,( q )  for all q <CO.) 

We now make some comments on the choice of a. In 

4. Mean-field theory 

Most previous work on layering transitions in Ising systems has been based on 
mean-field approximations (de Oliveira and Griffiths 1978, Pandit et a1 1982). Therefore 
we devote this section to comparing the results of mean-field theory and low- 
temperature series calculations to check the validity of the mean-field approximation 
in three dimensions and to follow which fluctuations are important as the mean-field 
limit is approached. In the Potts case considered here mean-field theory and low- 
temperature series do, as expected, give the same sequence of layering transitions. 
However, this is not always the case as will be demonstrated for the chiral clock model 
in the third paper of this series. 

We take two approaches. Firstly, following Szpilka and Fisher (1986) we perform 
the low-temperature series expansion for general coordination number 911, ql, the 
number of nearest neighbours parallel and perpendicular to the normal to the wall 
respectively, and take the mean-field limit, 911, qi-+oo, with qI1J and q L J o  fixed. This 
allows us to follow the evolution of the low-temperature series as the mean-field limit 
is approached. Secondly, we perform a more conventional numerical mean-field theory 
which is valid at higher temperatures but which must be solved numerically. 

4.1.  Low-temperature series in the mean-jield limit 

We perform a low-temperature expansion with arbitrary coordination number and, 
having obtained an expression for the phase boundaries, ph, : , , ,  , take the mean-field 
limit, 411, q l + W  with qllJ and qiJo constant (Thompson 1974). The lattice does not 
have to be regular or tied to a particular spatial dimension for this result to hold. 

Consider first the Ising case, q = 2. The way in which the number of axial neighbours 
affects the Boltzmann factor involved in creating an  axial chain is illustrated in figure 
7.  Observe that each flipped spin can occupy qI1/2 positions relative to the flipped 
spin in the preceding layer. Including the contributions from initial and  final bonds, 
and using an iterative argument as in 5 2.3 to demonstrate a sequence of layering 
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Figure 7. Possible appearance of an axial chain of flipped spins for the lsing model when 
the axial coordination number exceeds 2 (here qll = 6). Layers are denoted by columns of 
spins S. In each layer one spin (marked S )  is flipped. I t  is coupled to a flipped spin in 
an adjacent layer by a full line and also to ( i q , l  - 1 )  unflipped spins by broken lines. 
In-layer broken bonds ( 4 -  per flipped spin) are not shown. 

transitions, leads to the phase boundaries 

ph,, ,,+I =[ql l ( tq l -?-  tq1)/2]"-'(1 - f q l ) W n q - + O ( W ' n + l ' q  - 2  ). (4.1) 

Hence the mean-field limit, tql = T = constant, t ' +  1, is 

p h ,  ,,+' = ( I  - T ) [ T I ~ ( I / T ) ] " - ' W " ~  + o ( w ~ ~ ~ + ~ ~ ~  1. (4.2) 

Note that all the connected and disconnected diagrams are needed to obtain this result 
with the contributions from the disconnections becoming increasingly important as 
the mean-field limit is approached. 

We now turn to the more general case of the q-state Potts model. The leading-order 
diagrams are again axial graphs and the easiest way of calculating their contribution 
is to extend the transfer matrix method described in appendix 1 to a general coordination 
number. The form of the necessary matrices are given in appendix 2. The resulting 
phase boundary is 

p h ,  = [ fq1 - '+ (q  - 2 ) t q  - I  - ( 9  - i) tql)]fl-1(91,/2)n- '  

X [ l  - t q l + ( q - 2 ) ( t q ' 2 - t y l ) ] ~ n y  + O ( W ( " + " ~  - 2  1 (4.3) 

which in the mean-field limit becomes 

ph,  ,+I = [ q T  In( 1/7)/2]"-'( 1 - T I ' ? ) [  1 + ( 9 -  1 ) T ' / 2 ] W " q -  +o( W ( n f ' ) q  ). (4.4) 

This form of the phase boundary demonstrates that the mean-field result depends 
strongly on the q states of the model. Moreover, in the mean-field limit the distinction 
between connected and disconnected graphs is lost because each spin is connected to 
all spins in the neighbouring layers. Therefore, for an  axial graph, it does not matter 
which spin within the layer is reversed. 

Mean-field theory underestimates the effects of thermal fluctuations (Buff et a1 
1965). The interface unbinds from the surface because of entropic repulsion; hence 
we should expect the phase boundaries at a given field to occur at a higher temperature 
in mean-field theory compared with the low-temperature series result. The first few 
phase boundaries demonstrate this and are compared qualitatively in figure 8. 
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i! / 

Ph 

Figure 8. Qualitative comparison of the phase diagram obtained from low-temperature 
series (full curves) with that obtained from mean-field theory (broken curves) for the q-state 
Potts model. 

Note that if 47 b O( w ” )  then the low-temperature result (4.4) may no longer be 
used. This difficulty at high q was that discussed in O O  2 and 3. Further work would 
be required to demonstrate layering transitions for all q. 

4.2. A numerical mean-jield theory 

For completeness we compare the mean-field limit of the low-temperature series to 
the more conventional numerical mean-field theory for layered systems (Pandit et a1 
1982). We restrict our attention to the Ising model because it proved very difficult to 
obtain satisfactory numerical solutions for the Potts case. The advantage of this 
approach to mean-field theory is that it can be used at all temperatures-although it 
does not always predict the correct phase diagram, for example, above the roughening 
temperature. 

To obtain the mean-field equations we use the Bogoliubov inequality (Yokoi et al 
1981) for the mean-field free energy, Fmr, in a system with N layers of spins containing 
N, spins per layer: 

where H is the Ising Hamiltonian 

F is the exact free energy 
F = - kBT In[Tr(e-”)] (4.7) 

and ( )o are thermodynamic averages taken with respect to a trial Hamiltonian 
N - l  

Ho= c Cv,s,,, .  
1 = 2  I 

(4.8) 
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Because of the lack of translational invariance the mean field, v,, must be allowed to 
vary with layer i. 

Minimising with respect to the mean fields, 7, (Yokoi et al 1981), gives the usual 
expression for the free energy (ignoring constant terms) 

where the mean spin, (S ! ) ,  2 s  is N - 1, satisfies 

(4.10) 

(St) = t a n h h ,  (4.1 1) 

and (S,) ,  (S,w) are fixed by the initial conditions to be -1 and +1 respectively. 
Equations (4.10) and (4.11) were solved by choosing an  initial configuration and 

iterating until self-consistency was achieved. It may be the case that for a given T and 
h there are many solutions corresponding to local minima of the free energy, with the 
solution obtained numerically depending on the initial conditions. Within the mean- 
field approximation each solution may be identified as giving a distinct metastable 
film; the solution for which FmF is an absolute minimum gives the stable configuration 
of the interface. Although a search through initial configurations does not guarantee 
that the global minimum has been found, a plot of the free energies of the metastable 
states, which were approximately straight lines over the region of interest, gave us 
confidence in our results. 

The results agreed with our previous approaches, that is, a sequence of layering 
transitions. We found no  indication that the sequence would terminate for large n. 
In table 2 we compare values for the 2 :  3 phase boundary resulting from the different 
methods addressed in this paper to allow a quantitative comparison. The mean-field 
methods are in good agreement with one another: their discrepancy is due to the effect 
of ignoring higher-order terms in the low-temperature expansion. 

Table 2. Values for the phase boundary, ( p h ) ,  ), obtained by the different methods 
considered in this paper. 

Low-temperature Numerical mean- Low-temperature 
T series field theory mean-field theory 

1 .o 5.6 x 4.1 x IO-’ 4.1 x IO-’ 
1.5  1.8 x IO-’ 3.2 x IO-‘ 3.0 x lo-‘ 
2.0 3.4 x  IO-^ 9.2 x 1 0 - ~  7.9 x 1 0 - ~  

5. Summary and discussion 

Our aim in this paper has been to show that series methods can be used to predict a 
sequence of layering transitions as an interface unbinds from a surface. The model 
considered has been a q-state Potts model, extending previous work by Duxbury and 
Yeomans (1985) on the Ising model ( q  = 2). We have shown that layering transitions 
can be predicted by utilising both low-temperature and high-q expansions. The 
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sequence of phases must be established inductively by considering the leading-order 
contributions to the free energy at successive orders of the expansion. These arise 
from axially connected chains of flipped spins whose Boltzmann factors can, because 
of their one-dimensional nature, be calculated using a transfer matrix method described 
in the appendices. 

The dominant fluctuations responsible for driving the transitions are different in 
the low-temperature and high-q limits. In  the former case, a chain of spins, extending 
from the interface towards the surface, in which each spin flips to the bulk phase to 
the right of the interface is important, whereas in the latter case the chain comprises 
spins which have all transformed to states which differ from their neighbours. 

To compare our results to previous work, the mean-field theory of the model has 
also been studied, both by taking the infinite coordination number limit of the low- 
temperature series and by a numerical solution of the mean-field equations. We find 
that the sequence of layering transitions is qualitatively unchanged in this approxima- 
tion. We have shown that there is no distinction between connected and disconnected 
chains in this limit. The underestimation of thermal fluctuations by mean-field theory 
affects the phase boundaries as illustrated in figure 8. 

The n dependence of the correction terms, such as that proportional to n in (3.15), 
means that we cannot conclude that there is an infinite sequence of phases. Initially 
the correction terms arise in the low-temperature series from axial graphs with bumps, 
such as that shown in figure 9. These will have an extra factor O(nt2w"4- -2 )  compared 
with an axial chain, hence for sufficiently large n the correction terms may dominate 
the leading-order term which we have used to establish the phase sequence. This point 
is discussed in detail by Szpilka (1985). 

I l 2  
n' 

Figure9. A diagram in the low-temperature expansion which, when all the possible positions 

Above the roughening temperature, TR, the layering transitions must be destroyed 
(Sullivan and Telo da  Gama 1985). The first-order boundaries are expected to terminate 
at a sequence of critical points which accumulate at TR. Although low-temperature 
series methods have been used in both Ising (Weeks et al 1973) and  Potts (Schmidt 
and Pesch 1984) models to obtain a value for TR, they necessarily involve extrapolating 
the series using Pad6 analysis. The first few terms presented here d o  not, by themselves, 
give any measure of TR but the series certainly fails to converge as w increases. In 
the large-q series there is no obviously similar effect. We conjecture that this indicates 
that in the q +CO limit roughening is not observed. Indeed, Pearce and  Griffiths (1980) 
proved that in the q + CO limit mean-field theory, which neglects roughening, is exact 
(Widom 1972). 
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2 

n 

Figure 10. A diagram where m z  adjoining spins next to the interface are flipped to the ‘2’ 
state. For sufficiently large m and h > 0 this diagram decreases the energy. 

It should be noted that there exist high-order excitations which decrease the energy. 
An example is shown in figure 10, where m2 neighbouring spins with O( m) edge spins 
are flipped next to the interface in the ‘1’ phase. The Boltzmann weight for this diagram 
is of order 

exp[Pm(hm --MI. (5.1) 

For sufficiently large diagrams the field term dominates and leads to a divergence in 
the Boltzmann weight. 

The problem arises because the states are only degenerate at a point; as soon as 
h > 0, however small, there, is only one ground state and the expansions we have 
performed are about metastable states. Therefore the convergence of our expressions 
for the interface free energy is not obvious; however, it is a useful computational aid 
in finding the phase boundaries. This point has also been commented upon by Bricmont 
and  Lebowitz (1987) in their consideration of the Blume-Capel model. 

Despite these problems, series expansions provide a powerful method for studying 
interface phase transitions. In  two further papers we will extend the techniques 
described here to consider two rather different problems. Firstly, we will study solid-on- 
solid models where the interface is bound to the surface by a local pinning potential. 
We will then extend previous work on the chiral clock model (Armitstead er a/ 1986) 
to show that in this case the mean-field limit is not in agreement with series expansions 
in three dimensions. 

Appendix 1 

The transfer matrix method was introduced by Yeomans and Fisher (1984) to count 
all contributions from axial graphs of general length together with their decompositions 
(Fisher and  Selke 1981). This allows the chain of flipped spins to be built up step by 
step with the appropriate Boltzmann factor for a connected or  disconnected spin being 
included at each stage. 



A series approach to wetting and layering transitions: I 5653 

Consider first the contribution from overturning two axially adjacent spins in the 
‘1’ phase. The Boltzmann factors contributed by the new bond depend on the final 
excited states of the two neighbouring spins. There are (9  - 1 ) 2  possible final combina- 
tions of spins, many of which will carry the same factor; if the two final states are 
different a factor of tw4- will be introduced whilst if they are the same the factor is 
w4.. We are considering the region near a phase boundary, and therefore, as explained 
in 5 2.3, may take y - O( 1). The possible contributions may be recorded as a (9  - 1) x 
(9  - 1) matrix, M’, where the (x, y)th element representing the Boltzmann factor for a 
spin flip from the initial state (U,, u , + ~ )  to the final state (u,+x, a , + , + y )  (where we 
assume arithmetic modulo q throughout) is given by 

w4- X = y  
x # y. MA = { t W q .  ( A l . l )  

In order to take account of decompositions of the axial graphs, it is then necessary to 
include the possibility of a break between the two flipped spins (that is, to consider 
the spins to lie on different rows of the lattice). In this situation, the Boltzmann factors 
corresponding to the ( q  - 1)* excited states form the matrix 

M:? = t Z w 4 -  (A1.2) 

where the Boltzmann factor does not depend on the final states as two wrong bonds 
perpendicular to the interface are always formed. Thus recalling that a decomposition 
must be accompanied by a factor of -1 (Fisher and Selke 1981, Yeomans and Fisher 
1984) we can write the elements of the full matrix, M, which adds a bond between 
two ‘1’ spins as 

( 1 - t 2 )  wq- 
( t  - t ’ )  w4- 

x = y  
x # y.  Mx, = (A1.3) 

As y - O( l ) ,  this is also the matrix which adds a bond between two axial spins in the 
same initial state irrespective of that state-we shall need the case U, = u,+~ = 2. 

We also need a row vector to represent adding the first bond at the extreme left of 
the chain. If the initial bond is ferromagnetic then the yth element of this row vector, 
U,,, corresponding to the Boltzmann factor for flipping the initial spin to state (U, + y )  
is given by 

U,. = tw4- (A1.4) 

for all y.  
The final broken bond can be accounted for by a column vector. In  the ensuing 

calculations two vectors will be needed corresponding to the initial configurations and 
spin flips: 

x = l  
X Z 1  

(A1.5) 

ut:= t for all x. 
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To obtain the leading-order contribution to the reduced free energy difference, 
F,.- F,,, n'> n, we need to evaluate the axial diagrams shown in figures 3(c) and 3(d) .  
These can be constructed using the matrices listed above as follows: 

( i )  uM"-'ua 

(ii) u M n - ' u h .  
(Al .6)  

Hence the leading-order contribution to F,.- F,, is given by 

F,,, - F, = -( n ' -  n ) p h  + uM"- ' (  U, - ub) (A1.7) 

= -( n' - n ) p h  + [ 1 + ( q  - 2) t - (q  - I )  t2]"wynq, + O( ~ ( " + l ) q - - ~  ). (A1.8) 

This reduces to the result obtained by Duxbury and Yeomans (1985) in the Ising case, 
q =2 .  

Appendix 2 

I n  this appendix we write down the transfer matrices needed to calculate the Boltzmann 
factors for flipping an axial chain of spins with an arbitrary number of parallel and  
perpendicular nearest neighbours, qI1 and q L .  The notation used is the same as in 
appendix 1 so it will be sufficient to list the matrix elements which are further elucidated 
by referring to figure 7. 

(A2.1) 

(A2.3) 

t - 4 1 / 2  y = l  

{I Y f - 1  
up = (A2.5) 

= t Y I / '  for all y. (A2.6) 

Using these elements to calculate the products (A1.6) leads immediately to (4.3). 
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